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Solutions arc presented of the first two moment equations, including nonlinear terms, for the anibi- 
polar diffusion of an isothermal plasma across a magnetic field. The two geometries considered are 
the plane parallel case and the infinite cylindcr with axial symmetry. The Bohm rriterion is auto- 
matically satisfied by the solutions. It is shown that the singularity in the space derivative of the 
ambipolar drift velocity a t  the plasma boundary cannot be removed by an axial magnetic field of any 
strength. Thus the plasma drift velocity and the plasma density remain monotonic functions of the 
position coordinate. It is also shown, under the assumptions of this theory, that the ambipolar space 
charge field is always directed outward and does not reverse direction in this isothermal approxi- 
mation even for extremely high magnetic fields. One is forced to conclude that a realistic theory of 
amhipolar diffusion requires the consideration of thcrrnal gradients within the plasma. 

HE traditional approach to a theoretical treat- T ment of the ambipolar diffusion of a plasma to 
the walls of its container has been to start with 
the general transport equation, use the first and 
second moment equations neglecting all non- 
linearities, and then inzpose the boundary condition 
that the electron and ion densities are zero a t  the 
wall. Such an assumption leads to the nonphysical 
result that, in order to assure mass transport across 
the boundary, the diffusion velocity must be infinite 
a t  the boundary. 

In  a previous paper,' it was pointed out that, 
from a treatment of the complete first and second 
moment equations, including all nonlinearities, one 
obtains a solution, without imposing boundary con- 
ditions, which automatically obeys Bohm's crite- 
rion.2 That is, the ambipolar diffusion velocity at 
the boundary is equal to the ambipolar thermal 
velocity, v = (kl'*/hZ)',  where T* is the sum of 

l K.-B. Persson, Phys. Fluids 5,  1625 (1962). 
A. Guthrie and R. K. Wakerling, Characteristics of Elec- 

trical Discharges in Magnetic Fields (McGraw-Hill Book 
Company, Inc., Kew York, 1949), p. 77. 
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electron and ion temperatures and M is the ion mass. 
I n  the present paper, the equations are extended 

to include the effects of an applied magnetic field, 
including the shielding of this magnetic field due 
to the diamagnetism of the plasma. As before, the 
starting point is the general transport equation.' 
We immediately restrict our consideration to two 
specific geometries: (1) the plane parallel case with 
symmetry about the central plane, and ( 2 )  the 
infinite cylinder with axial symmetry. By using a 
configuration parameter p equal to 0 or 1 respec- 
tively for these two cases, one can express both 
geometries in terms of a single set of differential 
equations. The above assumption of symmetry re- 
quires that all spacial derivatives be zero except 
for the derivative with respect to the first co- 
ordinate which, in both cases, is the coordinate 
perpendicular to the plasma boundary. 

Considering the plasma as a three-component gas 
consisting of electrons, one species of positive ion 
and the background neutral gas, we then write the 
first and second moment equations for each corn- 
ponent in the following form: 

a p  1 d 
- + - - ( r o w l )  = PV,,  at r' dr 

- - -& e[Ei + e ' jkwmjBk],  
m 

[p*w&wk + P$] + V M P M W L  - V,MPm(W: - wa1 

(3) 

In  Eqs. ( 2 )  and (3), the first bracket is to be con- 
sidered as an operator acting on the second bracket. 
The Kronecker 6 and eiik symbol are defined in 
Ref. (4). The drift velocity of the neutral gas is 
here assumed to be negligible relative to the ambi- 
polar drift velocity of the ionized component of 
the plasma, in which case the moment equation 
of the neutral gas can be neglected. I n  the above 
equations n is the particle density (electron or ion); 

3 S. Chapman and T. G. Cowling, Mathematical Theory of 
Non-Uniform Gases (Cambridge University Press, London, 
1960), p. 48. 

4 I. S. Sokolnikoff, Tensor Analysis (John Wiley & Sons, 
Inc., New York, 1951). 

p is the mass density; v, the charged particle-neutral 
collision frequency; T ,  the temperature: w,  is the 
zth component of the mean particle velocity averaged 
over the velocity distribution; and Pa' is the electron 
or ion pressure. The subscripts m and M are used 
with the above symbols to distinguish between elec- 
tron and ion quantities. The symbol vmM refers to 
the electron-ion collision frequency and v,, to the 
frequency of ionizing electron-neutral collisions. 

Equations of this type for both ions and electrons 
are combined into sum and difference equations, 
the difference equations being formed by multiplying 
the ion equation by m / A f  and from this subtracting 
the electron equation. 

By combining the electron and ion equations in 
this manner, the resulting equations are in terms 
of the following macroscopic quantities: the mass 
density of the ionized component, p = p m  + p M ,  
the net space charge density, q = e(pM/M - p,,"), 
the mass flow of the ionized component, pu' = 
p,wi + P , ~ W L ,  and the current density, J ,  = 

e(p,wwk/M - p,w:/m). These are the quantities 
which describe the macroscopic behavior of the 
plasma and which are, a t  least in principle, directly 
measurable. In  order to simplify the resulting equa- 
tions, it is assumed that q / e  << p / M ,  i.e., that the 
ambipolar condition holds and thus that the Debye 
length is much smaller than the smallest dimen- 
sion of the plasma. In  addition, we assume u2 = 

u3 = 0, J ,  = 0, B ,  = R, = 0, and E, = 0. That 
is, mass transport is only allowed perpendicular to 
the boundary5; current flow perpendicular to the 
boundary is not allowed; and only an axial mag- 
netic field is considered, that is, the induced mag- 
netic field, B,, due to J 3 ,  is neglected relative to B,. 
We are thus considering here a plasma maintained 
by a relatively small current in the x direction. The 
condition on E', follows directly from Maxwell's 
equations and the symmetry assumptions. The elec- 
tron and ion pressures, as well as the collision fre- 
quencies, are taken to be scalar quantities. 

Under these assumptions the following equations 
result (where u is written for u,). 
The sum equation for i = 1 becomes 

6 Objection may be made to the excluding of ut in the 
combined presence of nonvanishing uI and Bt. However, i t  
can be shown that terms involving ut are negligibly small 
relative to  the other terms in the equation. 
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The difference equation for i = 1 becomes a 2 p  I d  
rauJ,), (7) - J ,  + (vTn + um,v) J ,  = a 

- ,B ( at  
%EL = 

and the continuity equation is 

a p  I d 
at / ar - + - - (?“”?A) = pu,. 

The difference equation for i = 2 becomes 
Here v, the ambipolar sound velocity is given by 

a I d  
- J ,  + ( v ,  + V , M ) J ~  + - - (rauJ2) at ar 

(kT*/M)’ in which T* is the ambipolar tempera- 
ture, T ,  + T M .  

Under the further assumption that the plasma 

these equations can be written in the following 
dimensionless form: 

+ p :$ $). (6) be isothermal and that the time derivatives be zero, mAf 

The difference equation for i = 3 becomes 

du 

1 1 
T o  

- - + i-,,CU’K(I - e)’ , ( 1 1 )  

where the various dimensionless quantities are: 
K = u/v, the ambipolar drift velocity normalized 
to the ambipolar thermal velocity; y = ( Y , + v , ~ ) T / D ,  

a dimensionless variable proportional to position 
within the plasma; 

a Hall-type quantity depending on the interaction 
of a crossed drift velocity and magnetic field; 
r = [fi2,/(v, + Y , , , ~ ) ] ~ ,  a magnetic parameter pro- 
portional to the square of the magnetic field; 
@ = p / p o ,  the mass density of the ionized com- 
ponent of the plasma normalized to its value a t  the 
center of the plasma; W = @K, a dimensionless vari- 
able proportional to the mass flow of the ionized 
component; 

w: = e2p/mMeo, with units of seC2, is the square 
of the plasma frequency, where eo is the dielectric 
constant of free space; wDO is the plasma frequency 
a t  the center of the plasma; fig = eB/(mM)*, with 
units of sec-’, is the hybrid gyrofrequency; and c 
is the velocity of light in free space. 

No boundary conditions were forced on the equa- 
tions. Instead, the “initial” conditions a t  the center 
of the plasma were used and Eqs. (9) and (11)-(13) 
were solved simultaneously, with K as the independ- 
ent variable, on an IBM 7090 computer using 
the Runge-Kutta method to calculate out from the 
center of the plasma. The machine solution of the 
epsilon equation was unstable unless the calcula- 
tion was started a t  some nonzero value of K .  Ac- 
curate asymptotic forms were therefore used to 
obtain the appropriate starting values of y, e, W ,  
and r. When the starting value of E was varied 
from its correct value, the epsilon solution always 
converged rapidly to the same function, provided 
only that the incrementation in K was kept suffi- 
ciently small. The €-function is thus apparently an 
eigenfunction, there being only one solution of the 
epsilon differential equation for a given set of 
parameters. This is not t,rue for the other variables 
which exhibit a whole family of solutions depending 
on the initial value assumed. 
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FIG. 1. Normalized mass density of the ionized component 
of the plasma as a function of normalized position coordinate 
for the plane parallel case where C = 0. 

l'or most laboratory plasmas (ne < 10" c1C3, 

P 2 1 Torr, and T ,  5 1 eV, hence C _< the 
diamagnetic effect of the plasma is quite small. For 
C 5 the solutions were negligibly different 
from those where C = 0. Most of the calculations 
were therefore carried out under the assumption 
C = 0. Figures 1-3 show the result of calculations 
for the case 6 = 10, q2 = 100 which are parameters 
very roughly appropriate for helium. These cal- 
culations are for the plane parallel case and neglect 
the diamagnetism of the plasma. The variation in 
the curves as the magnetic field is changed is some- 
what smaller for the case of cylindrical geometry, 
/3 = 1, but qualitatively the effects are the same. 
I n  Fig. 4, the form of @ is shown for 6 = 0.1 for 
various values of q2.  Note that as q2 -+ 00 the forin 

K 
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FIG. 2. Normalized ambipolar drift velocity as a function 
of normalized position coordinate for the plane parallel case 
where C = 0. 

of @ approaches that of the linear theory. We have 
here assumed, in deciding on appropriate values 
for 6, that vmM << v, so that { = 1. This assumption 
is not necessary and, in fact, directly influences 

The forin of Eq. (9) indicates that K is a inono- 
tonically increasing function of y until a singularity 
is reached a t  some critical value of y for which K = 1 
&e., u = v). Beyond this critical value of y, no 
solution for K exists. The possibility, however, re- 
mains that if E > 1 for some range of y, then the 
singularity a t  K = 1 might be removed. It was of 
considerable interest, therefore, to investigate the 
behavior of E ( K )  as a function of applied niagnetic 
field. 

only Kq. (9). 
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FIG. 3. The function B as a function of normalized position 
coordinate for the plane parallel case where C = 0. 

Defining the quantity Z = ~ ( 1  - E )  and sub- 
stituting in 12q. (11), we obtain 

1 dZ dy 1 - = - [E - 
(1 + - {oC@Z2 . (14) dK dK 

In order to show that E remains positive but less 
than unity over the range of K ,  it is sufficient to 
show that Z is always > 0. We therefore investi- 
gate the derivative field of Eq. (14) over the open 
interval 0 < K < 1 by setting dZ/dK = 0 and solving 
for Z,,(K) which is then the value of 2 for which 
dz/dK = 0. We note that, as K --f 0,0 5 z < z, --f 0 
and that also 0 < dZ/dK < dZ,/dK. Thus near 
K = 0, Z(K) is positive and is trapped below Zo(~ )  
in a region where its derivative is positive. The 
function Z can decrease only if Z,,(K) has a maxi- 
mum within the range of K .  It can be shown that 
no such maximum exists and therefore that Z re- 
mains positive over the range of K .  
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Two features are of particular interest in the be- 
havior of the space charge field as given by Eq. (lo), 
which represents the equilibrium between the elec- 
tron and ion pressures and the local force fields. 
First the derivative dK/dy has a minimum value of 
l/qz((p + 1) as K -+ 0 and thus the space charge 
field is always positive regardless of the strength 
of applied magnetic field. Secondly, this derivative 
has a singularity a t  K = 1 so that the space charge 
field becoiiies infinite a t  the plasma boundary. This 
nonphysical result iinplies that the isothermal as- 
sumptioil must be eliminated and temperature 
gradients considered near the boundary. 

I t  remains to discuss the solution for very large 
02 ,  that is for a very low percentage of ionizing 
collisions. As 11' increases, the machine solutions 
show that E << 1 farther and farther out toward 
the boundary. In order to obtain the asymptotic 
form of the solutions for = 0 as 7' + 00, we there- 
fore solve the equations under the assumption E = 0. 
The resulting analytic solutions are those of linear 
diffusion theory. For p = 1, the solutions also con- 
verge toward the linear solutions as seen in Fig. 4. 
Only when 9' is relatively small or the magnetic 
field high are the deviations from the linear theory 
very large. Where these conditions are not involved, 
the value of the theory is iiiairily conceptual. 

CONCLUSIONS 

It has been demonstrated that a uniform magnetic 
field is incapable of removing the singularity in 
d~ /dy a t  K = 1. Thus the plasina variables remain 
nioiiotoiiic functions of the position coordinate. 

Calculation of the space-charge field shows that 
reversal of the field (field directed inward) is not 
possible in the ambipolar isot,herinal case with non- 
conducting boundaries, under the symmetry as- 
sumptions uscd here. 

Note that in Eq. (lo), the space-charge field ap- 
proaches infinity as K -+ 1. This singularity in the 
space-charge field (which is then also a singularity 
in energy density) , occurring in the isothermal ap- 
proximation a t  the maximum velocity, u = v, is 
analogous to  the singularity in the velocity or mo- 
mentum which occurs in the linear theory a t  the 
rnaximum position, namely the plasma boundary. 

Just as one removes the singularity in the linear 
theory by allowing a nonzero plasma density a t  
the boundary, so one would expect to remove the 
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FIG. 4. Normalized mass density of the ionized component 
of the plasma as a function of normalized position coordinate 
for cylindrical geometry with axial symmetry showing the 
approach to Jo(2.4048 y / ~ ~ , ~ ) ,  thc solution of the lincar 
theory, as 72 + a. 

singularity in energy density (Le., in space-charge 
field) by allowing a non-zero thermal conductivity 
a t  the boundary. That is, one must consider tem- 
perature gradients within the plasma. 

That the isotherinal equations of the present 
paper are still a nonrealistic description of a plasma 
is also illustrated by the following. For given 6, 
q2, and I?, the value of v,~,, is uniquely determined 
by the machine solution. But Y,~,, = (vm + V,,~)R/V. 
Thus for a plasina of given dimension R and given 
temperature, with a given applied magnetic field, 
the electron collision frequency is fixed. Thus the 
neutral gas density is riot separately variable. In  
other words, the isothermal condition is not real- 
izable for all combinations of plasina temperature, 
size, and neutral gas density. We conclude, there- 
fore, that the isothermal requirement on the plasnia 
must be dropped and energy transport through the 
plasma must be considered in order to obtain a 
physically realistic theory of the ambipolar diffusion 
of a plasma to its boundaries. 
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